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Abstract—Knowledge graphs are essential for digital libraries
to store entity-centric knowledge. The applications of knowledge
graphs range from summarizing entity information over answer-
ing complex queries to inferring new knowledge. Yet, building
knowledge graphs means either relying on manual curation or
designing supervised extraction processes to harvest knowledge
from unstructured text. Obviously, both approaches are cost-
intensive. Yet, the question is whether we can minimize the efforts
to build a knowledge graph. And indeed, we propose a toolbox
that provides methods to extract knowledge from arbitrary text.
Our toolkit bypasses the need for supervision nearly completely
and includes a novel algorithm to close the missing gaps. As a
practical demonstration, we analyze our toolbox on established
biomedical benchmarks. As far as we know, we are the first who
propose, analyze and share a nearly unsupervised and complete
toolbox for building knowledge graphs from text.

Index Terms—Knowledge Graph, Information Extraction, Dig-
ital Library

I. INTRODUCTION

Knowledge graphs are essential for digital libraries to struc-
ture textual collections in an entity-centric way. They open up
a variety of applications for all kinds of information needs,
such as finding detailed descriptions of cultural heritage ob-
jects in the Europeana [1], exploiting drug-disease treatments
harvested from PubMed in the SemMedDB [2], semantically
querying relationships and properties of Linked Data in Wiki-
data [3], and many more. But crafting such knowledge graphs
for all kinds of domains is time-consuming and expensive.
This is because many of today’s practical knowledge graphs
are built completely manually, such as Wikidata [3] or the
Europeana [1], or at best semi-automatically (given that the
textual information is sufficiently structured, e.g., harvesting
Wikipedia infoboxes in DBpedia [4]).

Yet, why is automatically building knowledge graphs so dif-
ficult? On the one hand, the content curated by digital libraries
may be too heterogeneous to create good quality knowledge
graphs by rule-based approaches. For example, the creators of
SemMedDB were quite experienced with medical language.
They used a variety of grammatical patterns to extract medical
relations from PubMed [2]. The challenges are clear: Neither
do the rules adapt to paraphrased pieces of information, nor
are they easily transferable to other domains or disciplines.
On the other hand, artificial intelligence and machine learning
techniques that would cater for this heterogeneity rely on
supervision; See [5] for a good overview. For the training
of reliable extraction algorithms, tens of thousand training

examples are necessary, which in turn are usually again hand-
crafted. Moreover, this kind of training is needed for each
specific entity type, relation, etc.

Although the process of harvesting knowledge from un-
structured texts is challenging, novel developments in the area
of Open Information Extraction (OpenIE) promise to change
the game: OpenIE tools are designed to extract as much
information as possible without the need for supervision [5]–
[7]. While this would account for the applicability across
domains and the excessive need for training data, OpenIE
tools still have practical limitations. Since these methods are
designed to work on all kinds of information, their extractions
within topically focused digital libraries tend to be far too
general to result in a concrete graph structure describing the
respective domain sufficiently well. Moreover, more complex
natural language processing tasks like resolving synonyms or
disambiguating homonyms still need domain experts’ explicit
input and data modeling.

The question is whether these limitations can be bypassed
in practical digital library projects? Probably, we need a
minimum of supervision. This paper focuses precisely on this
gap: We develop a toolbox that converts a collection of
unstructured text from arbitrary domains into a structured
knowledge graph using as little supervision as possible.

Subsequently, our requirements for our nearly unsupervised
toolbox are obvious: It must be capable of processing mil-
lions of documents for real-world scenarios, and the resulting
knowledge graph should retain good quality. We analyze
the necessary steps to build a knowledge graph, including
entity linking and information extraction. Entity linking detects
concepts of pre-known vocabularies in texts, and information
extraction extracts relations between them [5]. Our findings
will show that we need practical algorithms to transform gen-
eral OpenIE outputs into a domain-specific knowledge graph
using as little supervision as possible. Here, we develop a
novel iterative semi-supervised cleaning algorithm with expert
feedback. In addition, we develop a novel extraction technique
called PathIE that reuses entity information in the extraction
phase. PathIE is more flexible, faster, and has a better recall
than established OpenIE tools, but suffers in precision.

In this paper, we will analyze the missing gap for con-
structing knowledge graphs in digital libraries: Can we bypass
the need for supervision completely? And how reliable and
well will tools perform for practical applications in digital
libraries? As far as we know, we are the first who develop



a practical and nearly unsupervised extraction toolbox for
digital libraries, see Sect. III. Our toolbox is not domain-
specific and bypasses the extensive need for supervision when
possible; See our discussion in Sect. V. We have applied and
analyzed our toolbox in the biomedical domain; See Sect. IV.
However, our evaluation will show that the toolbox will suffer
in performance compared to established supervised methods.
Although the quality might be lacking, the toolbox offers a
nearly unsupervised way to build knowledge graphs in digital
libraries. Further, we share our toolbox on GitHub1 to make it
reusable for other researchers. The code is written in Python
and is published under the MIT license.

The contributions of our work are:
1) We design an unsupervised, fast, and easy-to-use infor-

mation extraction method PathIE. PathIE is capable of
finding subject-predicate-object facts as well as support
the extraction of important keywords.

2) We develop a novel semi-supervised iterative predicate
cleaning algorithm utilizing word embeddings and expert
feedback.

3) We design a nearly unsupervised toolbox covering entity
linking, information extraction, cleaning, and storage.
We analyze the quality of our toolbox on established
biomedical benchmarks.

II. RELATED WORK

This section gives an overview of related work for the es-
sential components to build knowledge graphs: Entity linking
and relation extraction. Besides, we report on work about the
canonicalization of open information extraction outputs.

a) Entity Linking: is the task to link text spans to pre-
known entities [5]. Many algorithms and frameworks exist to
perform entity linking in practice, such as the ConceptMapper.
Funk et al. performed a large-scale evaluation of available
annotation tools in the biomedical domain [8]. Their find-
ings show that parameters should carefully be chosen for
different ontologies to achieve good quality. Dictionary-based
algorithms take a vocabulary and a text as an input and
perform a direct string-matching, i.e., if an entity term is
mentioned in the text, a mapping between the vocabulary entry
and the text is produced. An advantage of dictionary-based
approaches is their performance, i.e., a single iteration over the
text with dictionary-based lookups is enough to produce the
annotations. Suffering performance to be more error-tolerant
may be done by searching via string similarities, i.e., slight
derivations of vocabulary entries are allowed. If entity terms
have ambiguous meanings (homonyms), then the context of
the entity terms in the text must be considered. Here, more
complex approaches are needed to resolve homonymous terms
correctly. For example, short abbreviations in the biomedical
domain refer to several diseases, genes, and drugs. Tools
such as TaggerOne and GNormPlus are designed to consider
the context of the words [9], [10]. Typically, these tools are
supervised [5], i.e., they are trained with training data to learn

1https://github.com/HermannKroll/KGExtractionToolbox

the appropriate contexts [9], [10]. There was a long discussion
about the complexity of tagging models in [11]. The authors
argue that it might help train a language model like BERT
to maximize the annotation quality. However, simpler models
like classical decision trees perform slightly worse but are
trained much faster. In summary, the decision is up to a
specific domain and use case. Supervised models offer the
best performance, but in practice, dictionary-based approaches
might already be sufficient.

b) Relation Extraction: Supervised relation extraction
supports the construction of knowledge graphs from text
[5], [12]. Collecting training data for supervised methods
means compiling tens of thousand example extractions. These
examples are then used to train a relation extraction for a single
relation. Modern relation extraction even builds upon pre-
trained language models like BioBERT [13]. Further, relation
extraction tools may build upon distant supervision, i.e., a
training procedure does not require explicit sentences and
their contained facts [14]. A ground truth of valid facts is
sufficient, but no text evidence for them must be provided.
A learning procedure then extracts facts from texts to learn
which grammatical structures lead to correct extractions. Tools
such as Snorkel [15] support the automatic generation of
training data by formulating hints on which sentences would
be good candidates for a relation. Although the quality might
be promising, training relation extraction models means giving
examples for every relation, i.e., these models cannot be
transferred to another domain. And moreover, having such a
ground truth for distant supervision is not always the case. So
indeed, although methods exist that try to boil down the need
for supervision, here, as far as we know, supervision cannot be
bypassed completely. Hence, we design our toolbox to bypass
the need for training data in the extraction phase completely.

c) Canonicalizing OpenIE Extractions: Research has al-
ready been done on canonicalizing OpenIE extractions [16],
[17]. For example, CESI uses word embeddings and side-
information to canonicalize open knowledge bases [16]. An
open knowledge base may be understood as the output of
an open information extraction process. The authors sug-
gest clustering subjects, predicates, and objects in a high-
dimensional vector space. They use side-information like addi-
tional databases and embeddings to embed a subject, predicate,
or object into a high-dimensional vector space. A small part
of all subjects and objects must be linked to some existing
entity vocabulary. Then, a clustering step is applied to resolve
synonymous subjects like N.Y.C. and New York and predicates
like born in and has birthplace. However, CESI has two
major limitations: First, some entity linking is required, and
side information is domain-specific, i.e., it is not transferable.
Second, using clustering does not yield explainable results.
As an example, CESI outputs a list of different predicates
belonging to the same cluster. On the one hand, the number
of obtained clusters is quite unclear. Finding a good number
of clusters is a general problem when clustering. On the
other hand, adding a precise predicate label to represent all
synonymous predicates is difficult, especially if the predicates’



context is unavailable. Overall, CESI is an exciting approach,
but it requires domain-specific side information and has hard-
to-interpret outputs.

III. KG EXTRACTION TOOLBOX

This chapter describes the essential components of our
toolbox and our novel methods that close the missing gap
between open information extraction and practical knowledge
graphs. Returning to our scenario, we aim to build a biomed-
ical knowledge graph that captures knowledge about drugs,
diseases, and more. Subsequently, all examples stem from the
biomedical domain. However, the toolbox can be transferred
to other domains because we bypass the need for supervision.

A. Knowledge Graph

First, we will define knowledge graphs for our purposes.
The Semantic Web community and the W3C recommend
the Resource Description Framework (RDF) to store knowl-
edge [18]. A triple, called fact, consists of a subject, a pred-
icate, and an object. A fact represents a piece of knowledge,
e.g., (simvastatin, treats, hypercholesterolemia). Collections of
these facts are usually called knowledge graphs. Knowledge
graphs are entity-centric, i.e., only one node represents the
entity simvastatin. In a broad sense, an entity is an important
concept someone is looking for, e.g., drugs and diseases. We
denote the set of all entities as E . Values such as dates,
locations, numeric values, or strings might be of interest as
well, e.g., the melting point of some substance. These values
are called literals, and we denote the set of all literals as L.
Formally,

Definition 1: A knowledge graph KG = (V,E,Σ) is a
collection of knowledge. V ⊆ (E ∪ L) is a set of nodes and
E ⊆ E × Σ× (E ∪ L) is a set of directed and labeled edges.
f = (s, p, o) ∈ E is a fact with s ∈ E being a subject, p ∈ Σ
being a predicate and o ∈ (E ∪ L) being an object.

Yet, a fact is a labeled relation, denoted by a predicate,
between a subject and an object. These predicates stem from
a set of predicate labels Σ. The RDF standard covers many
more things that are beyond the scope of this paper [18]. We
focus on relations between entities and literals as the core
of each knowledge graph. We discuss the necessary steps to
build knowledge graphs from texts in digital libraries in the
following. A schematic overview of our pipeline is depicted
in Fig. 1.

B. Entity Linking

Entity linking is the task to link text spans to pre-known
entities [5]. These entities usually stem from vocabularies
or ontologies. Vocabularies collect important entities plus
adequate synonymous terms, descriptions, and more. Ontolo-
gies may provide additional information about entities like
subclass relationships, e.g., simvastatin is a drug and drugs are
chemical compounds. Biomedical researchers already spend
much work designing suitable vocabularies and ontologies;
see BioPortal2 for an overview. Designing ontologies is a

2https://bioportal.bioontology.org last access: 06.2021

well-known task for digital libraries, e.g., PubMed uses so-
called Medical Subject Headings3 (MeSH) to accelerate the
retrieval quality by resolving synonyms or finding relevant
sub-concepts. In a broad sense, entities might be seen as arbi-
trary resources, e.g., drugs, processes, treatment options, study
types, and many more. The Dublin Core Metadata Initiative4

already proposes a plethora of different vocabularies and gives
hints on how to design them in a standardized way. In the
following, we will consider the terms vocabulary and ontology
synonymous in being collections of entity entries. The process
of entity linking is well-known in many digital libraries, e.g.,
PubMed uses human curators and automatic processes to
annotate publications with additional MeSH terms. Returning
to our toolbox, we must identify these entities in written texts
to extract knowledge about them.

We implement a dictionary-based entity linker to support
unsupervised entity linking in our toolbox. The entity linker
is designed to handle large amounts of text, i.e., it is designed
to have a fast performance. Our entity linker requires an
entity vocabulary and text documents as its input. Then,
our linker produces entity annotations between the text and
the vocabulary as its output. Usually, supporting synonyms
and resolving conflicts is straightforward, i.e., entities plus
their adequate synonyms are identified by unique identifiers.
However, dictionary-based linking typically struggles with mi-
nor typing errors, unknown synonyms, homonyms, or custom
abbreviations by design. Therefore, our linker supports custom
abbreviations in a document. Suppose an author introduces the
abbreviation ASR for Aspirin via Aspirin (ASR). In that case,
our linker will resolve the abbreviation in the rest of the cor-
responding document correctly. Short entity names like well-
known abbreviations of some entities may lead to wrongly
tagged homonyms. Our linker only links short abbreviations
if the corresponding entity is at least detected a single time
with its complete mention in the document’s scope. In this
way, we minimize wrongly linked homonyms. The user can
adjust the length of a required complete mention. We support a
configuration file to adjust these settings for a user’s purpose.

Named Entity Recognition (NER) is a broader method to
detect entities and important concepts in texts. NER may
recognize entity mentions in the text but does not link these
mentions against pre-known entity vocabularies [5], [19]. For
example, the Stanford Stanza NER detects person names,
organizations, locations, dates, and more in texts [19]. Stanza
supports the annotation of 18 different named entity types.
Especially, the detection of dates and locations might be
beneficial across domains. However, NER comes with the
limitation of not providing unique entity ids. A text span
is identified as an entity type, but a precise entity id is not
provided. NER may lead to synonymous entities in a practical
knowledge graph. To demonstrate the usefulness of NER in
practice, we integrate an interface for Stanza into our toolbox
supporting the annotation of more general named entity types.

3https://meshb.nlm.nih.gov last access: 06.2021
4https://www.dublincore.org/specifications/dublin-core/dces/ l.a.: 06.2021
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Fig. 1. The Toolbox’s Systematic Overview: Entity linking detects important concepts and information extraction extracts important relations between them.
Then, the output will be cleaned and loaded into a structured repository.

Details about the quality of Stanza can be found on its project
website5 or in [19]. However, our toolbox might be easily
extended by integrating domain-specific and supervised entity
linkers. For example, the National Library of Medicine (NLM)
provides two powerful and freely usable tools: TaggerOne [10]
detects chemicals and diseases, and GNormPlus [9] detects
genes and species in texts. We have implemented interfaces
to both tools into our toolbox to demonstrate how domain-
specific entity linkers may be integrated. Lastly, the detection
of arbitrary literals like melting points in texts might be solved
via regular expressions. However, the literal detection strongly
depends on a given domain’s requirements. Thus, we do not
integrate literal detection in our toolbox.

C. Open Information Extraction

Information extraction is the task to transform unstructured
information into structured information [5], [6]. In this paper,
we understand information extraction as the extraction of
facts from texts. As a reminder, a fact is a simple triple
containing a subject, a predicate and an object, e.g., the fact
(simvastatin, treats, hypercholestorelemia) may be extracted
from simvastatin is used to treat hypercholestorelemia in pa-
tients. Information extraction is usually limited to pre-defined
relations and entities, and that is why we build upon open
information extraction methods. Open information extraction
is not limited to pre-known relations and hence, can be used
across domains. They take arbitrary text as an input and
produce facts as an output. Many OpenIE tools are available
as free-to-use software and work out-of-the-box. In addition,
these natural language processing toolkits work with a plethora
of different languages, e.g., the Stanford OpenIE tool supports
seven different languages [7], and Stanza supports even 66
different languages [19]. Recently, Kolluru et al. developed
a novel OpenIE6 extraction method and analyzed the quality
and performance compared to established OpenIE tools for the

5https://stanfordnlp.github.io/stanza/ last access: 06.2021

natural language processing community. Their findings show
that OpenIE tools come at best with a F1-measure between
40.0% and 65.6% (tested on several benchmarks). The best
performing system is OpenIE6 (2020), which can process
up to 31.7 sentences per second on a Nvidia Tesla V100.
OpenIE6 builds upon the latest neural extraction methods
and is pre-trained on a large variety of text. It does not
require domain-specific training and could thus be understood
as an unsupervised extraction method. At the same time, the
Stanford CoreNLP tool is an older rule-based and model-
based approach that is well-supported and has a fast runtime
performance [7]. Our toolbox implements interfaces for both
OpenIE methods, namely Stanford CoreNLP and OpenIE6.

Although the quality and runtime performance sound suffi-
cient, we can boost their performance further by using entity
linking information. Our focus is on constructing knowledge
graphs, and hence, we are only interested in facts between
entities and literals. First, this restriction boosts the runtime
performance, i.e., we only need to process sentences con-
taining at least two different entities/literals mentions. This
filtering may significantly reduce the number of sentences to
process, depending on the number of annotated entities and
literals. The toolbox applies this filtering step before extracting
information automatically if desired. OpenIE output usually
tends to be more general because OpenIE has no starting point,
e.g., subject or object could be anything within a sentence’s
scope. Therefore, the toolbox uses entity linking information to
filter OpenIE fact extractions by subjects and objects. Consider
the sample sentence: Metformin treats patients with diabetes.
OpenIE applied to that sentence result in extractions such
as (metformin, treats, patients with diabetes). Subjects and
objects should be entities (objects might be literals as well),
which is not the default case for OpenIE; see our example
above: Patients with diabetes is not an entity. The object in-
cludes diabetes only partially. We assume a partially included
entity to be sufficient and rewrite the fact to: (metformin, treats,



diabetes). Our toolbox supports a parameter to select the entity
filtering mode: None (keep all OpenIE extractions), partial
(subject and objects must partially include an entity mention),
complete (subject and object must be a fully annotated entity).
Then, it cleans the results of the supported OpenIE tools
automatically. The toolbox automatically converts passive
voice to active voice by the following rule: If the lemmatized
predicate includes be and the predicate contains a verb in
past particle. We utilize the Spacy NLP toolkit to quickly
lemmatize the predicate and compute the Part-of-Speech tags
for the predicate6.

D. PathIE

In contrast to conventional information extraction, where
arbitrary information is extracted, we only consider interac-
tions between entities and literals. Usually, supervised relation
extraction methods do precisely this: They already know the
subject and object candidates. OpenIE does not have this
information available in the extraction phase. And obviously,
we could hardly integrate it into existing tools. However, we
already have entity linking information available but want to
bypass supervised relation extraction. The central question for
a fact extraction is how entities are related within the sen-
tence. We design a high-performance extraction method called
PathIE utilizing the available entity information. In typical
natural language processing, each sentence is represented as
a sequence of tokens, i.e., single words. Furthermore, each
word is assigned a part-of-speech tag (POS tag), i.e., a word
category as nouns, verbs, etc. Tokens are syntactically arranged
in a so-called dependency parse tree, i.e., each token has
specific relations to other tokens within the sentence (subject,
etc.). PathIE utilizes the syntactical structure of a sentence
to answer the question of how entities are related. Tools,
such as the Stanford CoreNLP suite, offer high performance
when tokenizing, POS-tagging, and dependency parsing a sen-
tence [7]. Consider the following example sentence: Metformin
is widely considered to be the optimal initial therapy for
patients with type 2 diabetes mellitus. Our entity linking for
this sentence results in metformin (drug) and type 2 diabetes
mellitus (disease).

PathIE utilizes these entity linking information and searches
upon the sentence’s grammatical structure to derive the relation
between both entities. We transform the syntactical sentence
structure into a graph, i.e., nodes represent tokens, and edges
represent grammatical dependencies between the tokens. We
take advantage of the graph representation to perform a path
search between the tokens of both entities. Here, we compute
the shortest paths because we are interested in the shortest
and most substantial syntactical relation. The shortest path for
our example sentence is the following sequence of tokens:
(metformin, considered, therapy, patients, type 2 diabetes
mellitus). The corresponding relation between both entities can
be identified by 1. searching for all verbs on the path (via POS-
tags), and 2. by searching for special keywords like treatment,

6https://spacy.io last access: 06.2021

therapy or inhibition on the path. These special keywords
can optionally be pre-defined in a vocabulary before applying
PathIE. Hence, relations between entities are identified by
1) detecting all verbs on the path via the token’s POS tags
(VBN, VB, etc.), and 2) optionally detecting hand-crafted
vocabulary terms on the path. These terms can be seen as
special words like treatment, metabolite and more. Subject,
object, and each identified predicate are composed to a fact
extraction for the sentence. The path search is not directed, and
thus, we extract both directions for the interaction-keyword
therapy: (metformin, therapy, diabetes) and (diabetes, therapy,
metformin). These facts may be cleaned in the cleaning step
discussed subsequently. In some cases, such a path might
contain words like not or may which could lead to a wrong
extraction. We support two parameters for PathIE to ignore
extractions which contain a not or may. We assume our path-
based extraction technique allows a more flexible extraction
yielding a higher recall, but on the other side, decreasing the
precision. PathIE relies on a NLP tool to compute dependency
parses. We support the computation of dependency parses via
Stanford CoreNLP (rule-based and faster) and Stanford Stanza
(neural and more precise).

E. Unifying Synonymous Predicates

OpenIE and PathIE yield a variety of different predicates
in their extractions by design. As an example, the predicates
treats and aids have the same meaning when talking about the
cure of some disease by a drug. We have to unify these synony-
mous predicates to build a knowledge graph with a manageable
set of relations. Hence, our goal is to design a relation
vocabulary, i.e., a set of relations with a list of synonymous
predicates. The relation treats might have the synonyms aids,
improves and prevents. Using a relation vocabulary allows
us to unify the extracted synonymous predicates. Obviously,
going through thousands of synonyms manually and building a
relation vocabulary is too time-consuming. Hence, the process
must be automated, at best, without supervision.

Word embeddings embed words into a high-dimensional
vector space by considering their context [20]. Word vectors
whose words share a similar context should be located close
to each other. Moreover, word embeddings can be trained
on arbitrary text without supervision and are already known
for their ability to find synonyms for a given word. But,
how can we create a vocabulary of relations by unifying the
extracted predicates? We cannot entirely bypass the need for
supervision here because we need information on how relevant
some predicates are in a domain. We design an iterative semi-
supervised algorithm allowing domain experts to make these
decisions. The algorithm is depicted in Fig. 2 and works as
follows:

1) All fact extractions are grouped by their predicate. Then,
the group’s size is counted.

2) The distances between each predicate and all entries
of the relation vocabulary are computed. The nearest
neighbor is kept for each predicate. Hence, we obtain
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Fig. 2. Systematic overview of our novel semi-supervised iterative predicate unification algorithm. The algorithm reuses extraction information, a word
embedding and expert feedback to build a relation vocabulary iteratively. The relation vocabulary is used to clean the open information extractions later.

a mapping between a predicate and a term of the relation
vocabulary.

3) All mappings with a distance below a threshold t are
removed.

4) A list of mappings between the predicates and relations
of the vocabulary is computed. This list is sorted by the
number of extractions per predicate. The sorted list is
shown to the domain experts.

5) The experts can go through the top entries of the list
(maybe top 10). Suppose a predicate is mapped to the
wrong relation. In that case, they can improve their
relation vocabulary by introducing a new relation or
adding the predicate as a synonym to an already included
relation.

6) If all the important predicates are mapped correctly,
the experts can abort here. If not, the algorithm will
repeat at step 2 with the new relation vocabulary. The
algorithm outputs the predicate mappings against the
relation vocabulary.

Wrapping up, the algorithm takes a word embedding, a
threshold t, a relation vocabulary, and a set of fact extrac-
tions as input. It results in mappings between predicates and
relations of the vocabulary. The algorithm shows the most
important predicate (sorted by the number of extractions) to
the experts by design. In this way, they can iteratively build the
relation vocabulary. They may start with an empty relation vo-
cabulary or may have some first ideas. The parameter t allows
experts to choose a gap between precision and recall. If a high
threshold is chosen, the algorithm only maps those predicates
that are more likely to be synonymous (closer location in
the vector space). Hence the precision of correct mappings
will be higher. If a lower threshold is chosen, the algorithm
may yield wrong mappings but include more correct ones
(higher recall). The threshold should be adjusted for domain-
specific word embeddings. Finally, the algorithm produces a
reliable relation vocabulary plus predicate mappings against it.
In this way, many synonymous predicates can be unified with
an acceptable amount of labor. Indeed, the algorithm cannot
bypass supervision completely but boils the supervision down
to building a relation vocabulary with a manageable set of
entries iteratively. Our biomedical relation vocabulary needs
three iterations and around 63 different vocabulary entries.

F. Knowledge Graph Constraints

Entity linking, information extraction, and predicate clean-
ing return a set of fact extractions. In practice, knowledge
graphs should contain relations with precise semantics, e.g.,
treats is a relation between drugs and diseases. Good examples
are type constraints, e.g., treats should be a relation where
all subjects are drugs and all objects are diseases (treats ⊆
Drugs×Diseases). In a large-scale extraction scenario, extrac-
tion errors are likely to occur, e.g., an erroneously extracted
treat relation between two diseases. Obviously, cleaning such
a relation by type constraints will increase the overall quality,
e.g., treats is a relation that has drugs as its subjects and
diseases as its objects. Hence, a relation type constraint defines
the allowed entity types for subjects and objects. Our toolbox
supports type constraints to clean the fact extractions to in-
crease the overall quality. Domain experts can formulate these
integrity constraints, and our tool will automatically check
them in the cleaning phase. In addition to type constraints,
broader integrity constraints might be helpful. For example, if
we know that X is the treatment for some disease Y , then Y
cannot be an adverse effect of X . Such integrity constraints
require domain-specific logic and hence, must manually be
formulated by domain experts.

G. Storage and Provenance

The toolbox generates various outputs like entity linking
information and information extraction. To minimize the need
to handle several files, the toolbox utilizes an object-relational
mapper as an interface to an underlying relational database. We
use a Postgres system by default, but the relational mapper also
supports other systems like SQLite or MySQL. The toolbox
stores all information within a single place to reuse spe-
cific information if necessary, e.g., the toolbox automatically
queries entity linking information in the extraction phase if
required. However, the toolbox supports the export of outputs
in different formats; See the GitHub page for more details.
Entity linking information can be exported as PubTator docu-
ments or in a JSON format. Consider the following scenario:
Metformin is used to treat patients with diabetes is a sentence
in some document. The entity linking steps may yield that
Metformin represents the ChEMBL7 identifier CHEMBL1431

7https://www.ebi.ac.uk/chembl/ last access: 06.2021



and patients with diabetes are associated with the disease Di-
abetes Mellitus also known as the MeSH identifier D003920.
The information extraction steps yields (CHEMBL1431, is
used to treat, D003920). The cleaning step will map the
predicate is used to treat to treats, so that, (CHEMBL1431,
treats, D003920) is obtained. Next, the toolbox must export
the extractions in some format. The easiest way would be to
export facts like (CHEMBL1431, treats, D003920). However,
if the knowledge graph is used in downstream applications,
it might be helpful to provide additional provenance infor-
mation. Provenance ranges from just storing a reference to
the document, in which a fact was extracted, to storing all
information starting by the entity linking step. That means we
must store a tuple with the signature (document, subject str,
subject id, subject type, predicate str, predicate, object str,
object id, object type, sentence). For our example, a tuple
would look like (doc 123, Metformin, CHEMBL1431, Drug,
is used to treat, treats, patients with diabetes, D003920,
Disease, Metformin is used to treat patients with diabetes).
The toolbox supports the export of facts plus provenance
information to support both scenarios. The fact extractions and
useful provenance information can be exported as a TSV file
or RDF-serialization format. More details can be found on our
GitHub page.

IV. EVALUATION

In the following, we evaluate our toolbox by applying it
to established biomedical benchmarks. All experiments are
performed on our server, which has two Intel Xeon E5-2687W
(3.1 GHz, eight cores, 16 threads), 377 GB of DDR3 main
memory, NVME SDDs as its primary storage, and a Nvidia
1080 GTX TI as a GPU. We enable the GPU support for the
Stanford Stanza toolkit and OpenIE6.

A. Entity Linking

We evaluate and report the quality of entity linking with
our toolbox subsequently. Therefore, we have selected four
established biomedical benchmarks: 1. disease normalization
in NCBI Disease [21], 2. disease normalization in Biocreative
V CD-R [22], 3. chemical normalization in Biocreative V CD-
R [22] and 4. human gene normalization in Biocreative II Gene
Normalization [23]. All of these benchmarks require entity
detection in text. Then, the entity mentions must be linked to
normalized (disambiguated) concepts (entity identifiers). All
benchmarks provide entity vocabularies that we use as inputs
for our linker. In comparison to our entity linker, we report the
results of the latest biomedical entity linkers TaggerOne [10]
and GNormPlus [9]. TaggerOne and GNormPlus are both
supervised. We report all results in Table I.

TaggerOne recognizes diseases on the NCBI Disease Bench-
mark with a precision of 82.2% and a recall of 79.2%. Our
entity linker achieves a precision of 74.5% and recall of
55.1%. On the BioCreative V benchmark, TaggerOne detects
diseases with a precision of 84.6% and a recall of 82.7%. In
comparison, our entity linker achieves a precision of 82.8%
and a recall of 62.0%. Chemicals are found with a precision

of 88.8% and a recall of 90.3% by evaluating TaggerOne
on the BioCreative V benchmark. Our entity linker achieves
a precision of 76.6% and a recall of 78.7% when linking
chemicals. GNormPlus achieves a precision of 87.1% and a
recall of 86.4% on BioCreative II. In comparison, our linker
achieves a precision of 60.1% and a recall of 52.4%.

Next, we evaluate the linking quality when designing our
own entity vocabularies. In joint work with two pharmaceutical
domain experts, we design entity vocabularies for drugs,
plant families, and dosage forms. We apply our entity linker
against a random sample of PubMed abstracts and randomly
pick 50 produced entity annotations for each entity type for
evaluation purposes. We gave these entity annotations and
the corresponding sentence to both domain experts. They
carefully read the sentence (context) and decide together if the
annotated entity is mentioned. Hence, we could only estimate
the precision for these entity types. Drugs are tagged with 90%
precision, plant families with 82% precision, and dosage forms
with 82% precision. Concerning NER, Stanza has already been
evaluated on two different benchmarks, namely CoNLL03 and
OntoNotes. Stanza achieves a F1-score of 92.1% on CoNLL03
and 88.8% on OntoNotes [19].

Next, we report the linkers’ runtime to estimate if they
are applicable in a large-scale scenario. First, we randomly
sample 10k PubMed titles and abstracts containing at least
a single drug (to ensure that they contain relevant entities).
Then, we run each entity linker three times on this sample to
measure its runtime. TaggerOne takes around (149± 1) min
and GNormPlus takes around (118± 1) min to complete. Our
dictionary-based linker takes around (77± 1) s to complete.
Stanza takes around (41± 1) min utilizing our GPU. Deacti-
vating GPU supports leads to a runtime of about 9 hours.

a) Discussion: The evaluation of linking entities reveals
how well an unsupervised method might work. Our entity
linker lacks around 7.7% points (NCBI disease) and 1.8%
points (BioCreative V) precision behind TaggerOne when
detecting diseases. Although the precision of TaggerOne is not
far ahead, the recall of our linker clearly lacks behind: 79.2%
and 82.7% (TaggerOne) vs. 55.1% and 62.0% (our linker).
However, TaggerOne takes around 150 minutes, whereas our
linker needs around 77 seconds. A similar observation could be
made for linking chemicals on BioCreative V. Indeed, linking
human genes is challenging because gene descriptions are
often short and ambiguous to other terms. Here, our entity
linker clearly falls behind GNormPlus. Especially if terms are
unambiguous, our entity linker achieves a high precision, e.g.,
90% when linking drugs. Hence, our entity linker is a worthy
competitor: Our linker is fast, achieves good precision but
lacks behind in recall. Nevertheless, our entity linker does
not require supervision which is a significant advantage. In
summary, the development of an entity linker for a specific
domain depends on the complexity and disambiguation of
entity terms. Indeed, dictionary-based methods already achieve
a good performance and bypass the need for supervision here.
However, supervised methods should be preferred in scenarios
where context is essential, e.g., when linking genes.



TABLE I
ENTITY LINKING QUALITY ON BIOMEDICAL BENCHMARKS: STATE-OF-THE-ART (SOTA) TAGGERS ARE COMPARED TO OUR UNSUPERVISED ENTITY

LINKER. THE SOTA-TAGGING QUALITY RESULTS ARE FROM TAGGERONE [10] AND GNORMPLUS [9].

Benchmark Entity Type Quality of SOTA Entity Linker Quality of our Entity Linker
Name Precision Recall F-measure Precision Recall F-measure

NCBI Disease [21] Disease TaggerOne 82.2% 79.2% 80.7% 74.5% 55.1% 63.3%
BioCreative V CD-R [22] Disease TaggerOne 84.6% 82.7% 83.7% 82.8% 62.0% 70.9%
BioCreative V CD-R [22] Chemical TaggerOne 88.8% 90.3% 89.5% 76.6% 78.7% 77.6%
BioCreative II GN [23] Human Gene GNormPlus 87.1% 86.4% 86.7% 60.1% 52.4% 56.0%

TABLE II
QUALITY OF OUR SEMI-SUPERVISED ITERATIVE PREDICATE CLEANING
ALGORITHM. WE APPLY THREE ITERATIONS ON A PUBMED SAMPLE.

Relation W. Prec. Top Predicate Mappings

decreases 80.4% reduce(1.6M), decrease(1M), mediate(430K),
attenuate(339K), lower(275K), ...

induces 88.8% induce(3.5M), increase(1.9M), cause(1.3M),
result(800K), lead(698K), ...

treats 77.8% treatment(1.1M), treats(713K), use(654K),
therapy(456K), improve(192K), ...

metabol. 99.8%
metabolism(31K), catalyze(19K),
metabolite(10K), metabolize(8.7K),
oxidize(3K), ...

inhibits 98.6%
inhibitor(182K), inhibit(149K),
inhibition(89K), suppress(44K),
downregulate(9.8K), ...

interacts 69.6% bind(497K), regulate(345K), act(148K),
modulate(131K), interact(118K), ...

B. Predicate Unification

We perform an expert evaluation to estimate our novel
semi-supervised predicate cleaning algorithm’s quality in the
following. Therefore, we apply PathIE on a PubMed sample
of about 5.6 million PubMed documents. The sample contains
documents in which at least a single drug was linked (because
we are interested in pharmaceutical relations). We use the
biomedical word embedding trained on PubMed from [24].
Together with two pharmaceutical domain experts, we have
designed a relation vocabulary with ten relations and around 53
entries. We build the vocabulary incrementally by performing
three iterations. We tested a few thresholds for this paper and
found a threshold of 0.4 to deliver good results.

Next, we evaluate six relations by selecting the top-30
predicate mappings for each relation (ranked by the vector
distance). We give these mappings to two domain experts
for evaluation, i.e., they decide whether a mapping is correct.
The results are listed in Table II. We compute the weighted
precision to weight the mapped predicates based on their
frequency, i.e., predicates that occur more frequently have a
greater influence on the weighted precision. We report the top
five predicates that are mapped to the corresponding relation
with their extraction frequency. For example, the top 30
predicates mapped to the relation decreases have a weighted
precision of 80.4%. The weighted precision of the results is
between 69.6% (interacts) up to 99.8% (metabolizes). The
quality depends on how precise a relation can be formulated
with corresponding synonyms, e.g., metabolizes has precise
and unambiguous terms. Hence, most of the mapped predicates

TABLE III
CDR2015 BENCHMARK EVALUATION [22]. THE TABLE REPORTS THE
EXTRACTION QUALITY FOR OPENIE TOOLS, PATHIE AND BASELINES.

Method Quality
Prec. Rec. F1

CoreNLP OpenIE 64.9% 5.8% 10.6%
OpenIE6 53.1% 5.5% 10.0%
PathIE 50.8% 31.7% 39.1%
PathIE Stanza 51.1% 30.9% 38.5%
Workshop Best Precision [22] 90.5% 80.8% 85.4%
Workshop Best Recall [22] 86.1% 86.2% 86.1%

are correct. In contrast, the predicate uses is wrongly mapped
to treats. Further improvements to the vocabulary can quickly
be made by applying the predicate unification algorithm again.,
e.g., uses could be mapped to another relation.

C. Information Extraction

In the following, we evaluate the information extraction
quality and measure the runtime to estimate whether OpenIE
tools are applicable in large-scale scenarios. We evaluate both
OpenIE tools in our toolbox, namely Stanford OpenIE and
OpenIE6. In comparison, we analyze our PathIE extraction
method based on Stanford CoreNLP and PathIE Stanza based
on Stanford Stanza. For the evaluation, we apply our toolbox
to already established benchmarks: 1. BioCreative V CD-R
(relations between chemicals and diseases), and 2. BioCreative
VI ChemProt (relations between chemicals and proteins).

a) BioCreative V CD-R: The benchmark [22] requires
the extraction of induces relations between chemicals and
diseases. The benchmark provides PubMed abstracts that
are annotated with chemicals and diseases. Here, we apply
our unsupervised extraction methods plus cleaning to extract
induce relations from texts. We reuse the previously defined
relation vocabulary. It comprises around ten synonyms for the
induces relation. We did not adjust the vocabulary for this
benchmark. Hence, we do not require training data here at
all. The results are reported in Table III. For comparison, we
include the workshop’s best-performing systems concerning
precision and recall.

CoreNLP OpenIE yields a precision of 59.3% and a low
recall of 5.1%. OpenIE6 yields a precision of 53.1% and
a recall of 5.5%. PathIE yields a precision of 50.8% and a
recall of 31.7%. PathIE Stanza produces comparable results,
i.e., 51.1% precision and 30.9% recall. The workshop’s best
performing and supervised systems achieve a precision of



TABLE IV
BIOCREATIVE VI CHEMPROT EVALUATION [25]. THE TABLE REPORTS

THE EXTRACTION QUALITY FOR OPENIE, PATHIE AND BASELINES.

Method Quality
Prec. Rec. F1

CoreNLP OpenIE 59.3% 5.1% 9.3%
OpenIE6 55.9% 6.2% 11.1%
PathIE 30.3% 55.3% 39.1%
PathIE Stanza 29.4% 56.6% 38.7%
Sentence Co-Mention [25] 4.4% 98.0% 0.08%
Workshop Best Precision [25] 74.4% 55.3% 63.4%
Workshop Best Recall [25] 56.1% 67.8% 61.4%
BioBERT [13] 77.0% 75.9% 76.5%

90.5% and 86.1%, with a corresponding recall of 80.8% and
86.2%.

b) BioCreative VI ChemProt: The benchmark [25] re-
quires the extraction of relations between chemicals and
proteins from the text. Therefore, PubMed abstracts with
chemical and protein annotations are given. The task is to
extract five relations, namely, inhibits, upregulates, agonist,
antagonist and substrate. Together in cooperation with both
domain experts, we carefully read the relation descriptions and
build a relation vocabulary for this benchmark. The relation
vocabulary comprises five relations and a few synonyms
for each relation. To assist the process of finding suitable
synonyms, we briefly had a look at the benchmarks training
data. The creation of the vocabulary takes around one hour.
Then, we evaluate our extraction methods on the benchmark’s
test data. The results are listed in Table IV. For comparison, we
include the workshop’s best performing concerning precision
and recall. In addition, we include a simple sentence co-
mention baseline [25] and the BioBERT relation extraction
findings [13].

CoreNLP OpenIE yield 59.3 % precision and 5.1 % recall.
OpenIE6 comes with a precision of 55.9 % and a recall of
6.2 %. PathIE achieves 30.3 % precision and 55.3 % recall.
PathIE Stanza has a slightly lower precision 29.4 %, but
higher recall of 56.6 %. Just for a comparison, the sentence
co-mention baseline yields only a precision of 4.4 % and
a recall of 98.0 %. Hence, a few relations must be men-
tioned across sentences. The best precision-oriented baselines
achieves 74.4 % precision and 55.3 % recall. The best recall-
oriented baseline system achieves 56.1 % precision and 67.8 %
recall. BioBERT, a language model trained on the whole
PubMed collection, was fine-tuned for the relation extrac-
tion task [13]. Then, BioBERT yields 77.0 % precision and
75.9 % recall. Both workshop baselines and the fine-tuning of
BioBERT rely on supervision.

c) Performance Analysis: Next, we analyze the runtime
of our extraction methods on a random sample of two mil-
lion PubMed abstracts that include at least a single drug
(biomedical focus). In summary, this sample has 178.5k entity
annotations. We extract 52.6k sentences that include two
different entity mentions. PathIE takes about two minutes, and
PathIE Stanza takes 42 minutes on our GPU. CoreNLP takes
8.5 minutes, and OpenIE6 takes about one hour on our GPU.

d) Discussion: The runtime evaluation demonstrates that
all four extraction methods are applicable in a large-scale sce-
nario. However, the comparison to supervised methods shows
disadvantages concerning precision and recall. Although su-
pervised methods outperform our unsupervised methods, es-
pecially PathIE is a strong competitor. PathIE does not require
training data at all and still may come with a precision of 50%.
PathIE is designed to extract all relations between entities in
sentences if connected via a predicate or a special keyword
in the grammatical structure. Having a closer look at the
BioCreative VI ChemProt benchmark, PathIE yields about
40% precision for the inhibits relation, but only 18% precision
for upregulates. Thus, PathIE can extract some relations with
good quality, but not in all cases. As already expected, OpenIE
tools lose recall in comparison with PathIE. Here, OpenIE fails
to extract facts from long, complex, or nested sentences. For
example, OpenIE can find an inhibition in a precise clause
like Metformin inhibits mtor. However, OpenIE could not
extract the relation inhibits in a phrase like Metformin is a
known inhibitor for mtor. The problem here is that the verb
is does not give enough information to extract a meaningful
inhibits relation. Further advancement in OpenIE would be
necessary to extract such relations with a higher recall. As a
last remark, biomedical relation extraction benchmarks tend to
include complex, long, and nested sentences. The extraction
quality of our toolbox might hence be better in another domain
if sentences are more straightforward.

V. CONCLUSION

In this paper, we have developed a nearly-unsupervised
toolbox to construct knowledge graphs from texts in digital
libraries. An overview of our toolbox and its components is
given in Table V. We have implemented a dictionary-based
entity linker supporting custom abbreviations and short abbre-
viation resolution. In practice, our toolbox may be extended
by domain-specific entity linkers like we already demonstrated
with TaggerOne and GNormPlus. Our toolbox provides inter-
faces for the latest OpenIE tools, namely Stanford CoreNLP
and OpenIE6. In addition, we design a recall-oriented and
flexible extraction method PathIE. Reliable fact extractions
are produced by combining these unsupervised extractions
methods with entity-based filtering and a novel iterative semi-
supervised predicate unification algorithm. Type constraints
ensure precise semantics for relations, and integrity constraints
might minimize errors in the extraction phase.

The evaluation demonstrates that we already achieve a
good quality on established benchmarks. Supervised methods
outperform our linker by a small margin for entity linking,
but they rely on training data and are way slower. Next,
supervised relation extraction outperforms our unsupervised
extraction methods clearly. Moreover, the best quality can
only be achieved by utilizing language models like BioBERT
for relation extraction. However, training a language model
for a given domain can be a very cost-intensive task [13].
The training of BioBERT took even 23 days on eight Nvidia
V100 GPUs [13]. Collecting enough training data for a re-



TABLE V
AN OVERVIEW OF OUR TOOLBOX’S COMPONENTS. WE REPORT WHETHER THE COMPONENT RELIES ON SUPERVISION AND IS DOMAIN-SPECIFIC.

Component Supervision Domain-Specific Supported Tools
Entity Linking no no A dictionary-based entity linker for arbitrary vocabularies. Named Entity Recognition

(NER) via Stanford Stanza (Location, Time, and more) [19]. We integrate TaggerOne
(Diseases, Chemicals) [10] and GNormPlus (Genes, Species) [9] as examples.

Information Extraction no no PathIE, PathIE Stanza, CoreNLP OpenIE [7] and OpenIE6 [6]
Predicate Cleaning yes yes Entity-based filtering and an iterative semi-supervised predicate unification
Constraint Cleaning no yes Cleaning via type constraints
Storage no no Object-relational-mapper for relational databases and JSON/RDF-serialization export

liable entity linking or relation extraction comes even with
a price. In practice, this could hinder the construction of a
knowledge graph. Precisely here, we propose our toolbox.
The toolbox requires entity vocabularies and expert interaction
when cleaning the extracted predicates. Many domains already
have designed entity vocabularies that are ready to use. And
if not, tools like Stanza or utilizing entity information of
existing knowledge graphs like Wikidata may close the gap
here. In practice, predicate cleaning boils down to selecting
a few hand-crafted relations plus synonyms in an iterative
fashion. Experts control which predicates are mapped to the
corresponding relation, and similar predicates are found via
unsupervised word embeddings. We believe that our toolbox
offers the possibility of harvesting knowledge from text across
domains. Although the quality might not be the best, there is
often no alternative in practice. Collecting training data and
training language models is often too cost-intensive to concern.
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G. P. Rodrı́guez et al., “Overview of the biocreative vi chemical-protein
interaction track,” in Proceedings of the sixth BioCreative challenge
evaluation workshop, vol. 1, 2017, pp. 141–146.


