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Abstract
Digital libraries provide different access paths, allowing users to
explore their collections. For instance, paper recommendation sug-
gests literature similar to some selected paper. Their implementa-
tion is often cost-intensive, especially if neural methods are applied.
Additionally, it is hard for users to understand or guess why a rec-
ommendation should be relevant for them. That is why we tackled
the problem from a different perspective. We propose XGPRec, a
graph-based and thus explainable method which we integrate into
our existing graph-based biomedical discovery system. Moreover,
we show that XGPRec (1) can, in terms of computational costs, man-
age a real digital library collection with 37M documents from the
biomedical domain, (2) performs well on established test collections
and concept-centric information needs, and (3) generates explana-
tions that proved to be beneficial in a preliminary user study. We
share our code so that user libraries can build upon XGPRec.

CCS Concepts
• Information systems → Information retrieval; Document
representation; Web interfaces.

Keywords
Explainable Paper Recommendation, Biomedical Document Re-
trieval, System Design, User Interface, Digital Libraries

1 Introduction
Digital libraries provide effective access paths for users to explore
their underlying collections. However, the number of scientific pub-
lications in such collections is increasing rapidly. This vast amount
of options to look at combined with possibly under-specified infor-
mation needs of users can lead to challenges when trying to find
related work for a topic of interest as keyword-based options are in-
sufficient [25]. As a remedy, paper recommendation systems suggest
related literature based on some user’s selected article(s) [12, 49].
The advantage of paper recommendation is that users get an im-
pression of what other works are highly related to some given
article, allowing them to explore a library’s collection in this way.
We consider the following definition for the paper recommendation

task: Given an initial article, what are other relevant articles with
regard to the input article’s topic and content?

Current paper recommendation systems do not focus on limit-
ing computational complexity or performing the task with fewer
resources, even though the emissions produced by neural retrieval
methods are several orders of magnitude higher than those of
BM25 [44]. Moreover, even worse, current approaches often rely on
deep learning [25], i.e., a cost-intensive training or embedding step
is necessary. Collecting training data on a large scale while also
considering a variety of different information needs and topics is an
exceptionally challenging task. If training data is just collected for a
special subgroup of users, learned system will likely have a bias in
the end when answering unseen information needs. In practice, the
computational costs of neural retrieval methods and the collection
of training data usually hinder their implementation in a digital
library. Another understudied issue but desirable goal in paper
recommendation is explainability [25]. Explanations are helpful
to (1) justify individual recommendations, (2) understand how a
system works, and (3) distinguish good from bad recommendations
via users’ feedback [6]. In contrast to deep learning approaches
that may struggle to explain their retrieved documents to users,
we choose to head for an alternative: concept-centric graph-based
document representations.

We tackled the two issues of high costs (in terms of retrieval
and training data collection) and missing explainability by build-
ing upon graph-based document representations in cooperation
with PubPharm1, the specialized service for Pharmacy (some of
this paper’s authors are part of the PubPharm team). In addition to
keyword-based retrieval, PubPharm offers a graph-based discov-
ery system called the Narrative Service2 as a more sophisticated
access path for users. The Narrative Service assumes that complex,
concept-centric information needs can be represented as narrative
query graphs, i.e., as short stories of interest involving relevant
biomedical concepts and their interactions. The service comes with
two central advantages [28]: First, narrative query graphs allow
users to search for literature precisely by stating concept interac-
tions explicitly. Second, users can explore a digital library’s col-
lection using variables, e.g., structuring the literature by possible
1www.pubpharm.de
2https://narrative.pubpharm.de
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treatment options in adults with diabetes. While the costs for har-
vesting graphs from texts can be quite high, we proposed effective
and cost-moderate extraction workflows for digital libraries that
we applied to build our and PubPharm’s system [29, 30].

We expand our and PubPharm’s existing Narrative Service and
provide more functionality to our users. We design and implement
an explainable paper recommendation system (a demo video is avail-
able here3), called XGPRec. We will integrate XGPRec into to our
graph-based biomedical discovery system [28]. By consciously re-
fraining from using computationally intense neural retrieval meth-
ods in our recommendation and instead relying on graph-based
similarities and text-scoring through BM25, we bypass vast com-
putational costs [44]. Graph representations can visualize complex
interconnections and enable users from the biomedical domain to
immediately grasp if a paper fits what they mean to find [26]. In
this work, we focus on justifying recommendations [6], which we
achieve by displaying overlapping graph patterns between an initial
and a candidate paper to explain recommendations for users.

At the showcase of a real digital library, we demonstrate how
graph-based recommendation can be implemented for the extensive
MEDLINE document collection, which contains about 37 million
documents. Our research objective for this work is thus: How can
we design a fast and reliable paper recommendation system? More
precisely: (1) How can we find relevant candidate documents with as
low costs as possible (first stage)? (2) How can we compute relevant
and explainable recommendations (second stage)?

Our code is available at GitHub4 and Software Heritage5.

2 Related Work
2.1 Paper Recommendation
Several surveys describe approaches and problems of the general
paper recommendation domain [4, 7, 25, 46, 55]. Our approach
operates on the biomedical domain, incorporates a knowledge graph
for every paper and is explainable.

Biomedical Domain. EILEEN [1] operates on a dataset from
MEDLINE and lets users indicate binary relevancy of search results.
Tf-idf, SVD, Elasticsearch and key phrase extraction with RAKE are
combined. ChemVis [8] uses PubChem and depicts chemical compo-
sitions of materials while using HyPlag [39] for general document
similarity and RecVis [9] for recommendation. Guo et al. [18] use a
linear combination of bibliographic coupling and textual similarity
either computed with PMRA [34], BM25 or cosine similarity of
tf-idf vectors. They evaluate their approach on the TREC Genomics
dataset. Emati [24] works on articles which appeared in PubMed
or ArXiv since 2000. Users can (dis)like papers or upload a list of
articles they have cited as positive examples to train classifiers
on relevant literature. The system uses BERT or tf-idf vectors of
articles and their metadata and multinomial Naive Bayes to classify
relevant and irrelevant papers. KnowCOVID-19 [41] uses differ-
ent topic models on CORD-19 to identify topics described, genes
explored and drugs used in papers. They present an analysis of
papers according to the Levels of Evidence Pyramid based on paper
tagging by users.

3https://youtu.be/oLZFCtVuQWU
4https://github.com/HermannKroll/NarrativeRecommender/
5Software Heritage ID:swh:1:dir:eaeaac5c6a9ccb00542431398e43dec34d910faf

Two approaches are available online: PubMed displays simi-
lar articles to papers on their abstract page6. Word-weighting on
stemmed titles, abstracts and MeSH terms as well as document
length are considered when computing the neighboring recommen-
dation candidates for an initial paper. The most similar documents
for each paper are pre-computed and displayed to users to ensure
fast response times. LitSuggest [3] classifies unseen papers based
on users’ ratings of relevancy of papers per topic on PubMed.

Therefore, from the biomedical domain, we could compare our
approach against LitSuggest or PubMed. LitSuggest requires pos-
itive and negative training data provided by an user in order to
recommend papers, therefore we disregard the system in our anal-
ysis to focus on easiness of use as given by PubMed.

Knowledge Graphs. KERS [2] is a feedback-based system rec-
ommending articles from categories, a user has interacted with
before. The categories stem from an expert-built KB. CV-Lattes [14]
uses users’ published papers to build terms and concepts profiles
(stored in a KB), weights of similarity vectors between them stem
from a KB. Li et al. [33] compose a KG-based embedding of paper
metadata and learn a mapping between users’ browsed and clicked
recommended articles. Manrique and Marino [37] compare differ-
ent edge- and node- weighting schemes on directed graphs of single
papers using an external KB. Neethukrishnan and Swaraj [40] build
personal ontologies for users from concepts of associated articles
using the ACM taxonomy, WordNet and SVMs. The overall goal
of IBM PARSe [45] is identifying papers a user should read to up-
date an existing KG. Named entities of papers are extracted and
papers closest related to the existing KG are recommended. Tang et
al. [47] use an external KB to identify concepts in papers which they
connect in a KG including users and papers. Wang et al. [50] feed
embedded paths from a user-paper-interaction KG into an LSTM.

While previous works use information from KGs to enrich doc-
uments, we transform each document into a small KG. Each of
these document graphs then represents the document’s essential
information (concept interactions).

Explainable Systems.Missing explainability is one of the wide-
spread problems in paper recommendation [25]. TIGRIS [11] pro-
vides a responsive graph linking keyword nodes to nodes repre-
senting papers fitting a user’s interests. The graph substitutes a
ranked result list. ArXivDigest [17] is a living lab for providing
personalized recommendations from arXiv papers with textual ex-
planations. JTIE [53] describes explainability as an important aspect
of their approach but does not describe the format of explanations.
Bakalov et al. [5] highlight terms matching user’ interests in ab-
stracts of recommended papers. Kangasrääsiö et al. [23] do not
explain recommendations but let users weight the input keywords
in a visual interface, thus indirectly explaining the suggested papers.
LIMEADE [32] is a general purpose posthoc explanation approach
producing weighted interpretable features, e.g., influential terms of
recommended candidate papers.

Existingwork often relies on textual features such as highlighting
terms in abstracts. As users of the underlying DL have already been
encountered to prefer graph over textual explanations [26] we
decided on focusing on an inherently explainable recommendation
method producing graphs as explanation.

6https://pubmed.ncbi.nlm.nih.gov/help#computation-of-similar-articles
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Figure 1: Systematic overview: Document graph representations are used to compute and explain relevant paper recommenda-
tions for users.

2.2 Narrative Service - Graph-based Discovery
PubPharm’s graph-based retrieval service, called the Narrative Ser-
vice [28], allows users to express their information need as a nar-
rative query graph, i.e., graph patterns with triple-like statements
(concept, interaction, concept). A query is then answered by docu-
ments that contain the search graph pattern. For the query process-
ing step, they transformed texts into graphs by detecting relevant
concepts and extracting their interactions. Concepts were identified
by deriving annotations from the PubTator service [51, 52] and per-
forming a dictionary-based concept linking through vocabularies
derived from ChEBML [38], Wikidata [48] and the Medical Subject
Headings. Statements (concept interactions) were extracted by us-
ing PathIE and a sentence-based extraction method that extracts
general association statements if two concepts were mentioned
within the same sentence. Briefly, PathIE extracted a statement
between two concepts if two detected concepts were connected
on the dependency parse of a sentence (basically the grammatical
structure) derived with the Stanford CoreNLP toolkit [36]. Details
about the extraction methods have already been published in [27]
and [28]. The methods’ and system’s code is freely available7,8. The
discovery system currently features around 38 million publications
from the MEDLINE collection and 70k COVID-19 pre-prints from
ZB MED’s preVIEW service [31].

3 Graph-based Recommendation and
Explanation

The discovery system contains a set of documents D [28]. A docu-
ment 𝑑 ∈ D is represented by its text 𝑑text (title and abstract), a list
of concept annotations 𝑑concepts and a list of extracted statements
𝑑statements. A concept annotation maps a specific text span of 𝑑 to
a pre-known concept of the concept vocabulary C (the set of all
known concepts by the system). Concepts are identified by pre-
cise IDs and a type, e.g., drug or disease. An extracted statement
is composed of a subject-predicate-object triple, e.g., (Metformin,

7https://github.com/HermannKroll/NarrativeIntelligence
8Software Heritage ID:swh:1:dir:9e2435bb03d544039cc96fa1b17537050faec6e3

treats, Diabetes), the sentence it was extracted from, and a con-
fidence value (how good the extraction was based on some NLP
method). Sect. 2.2 contains details about appliedmethods and details.
The document graph of 𝑑 is the set of subject-predicate-object
triples extracted from the document. A document graph is given by
graph(𝑑) = (𝑉 , 𝐸) where 𝑉 is the set of nodes (detected concepts)
and 𝐸 is a set of concept interactions (triples). This paper aims to
reuse our existing document graph representation [28] to perform
a reliable and explainable paper recommendation; see Figure 1.

Task Definition (Explainable Paper Recommendation):
Given an input document 𝑑 , compute a ranked list of documents
⊆ D. For each document 𝑑𝑖 in that list provide an explanation 𝑒𝑖 of
why 𝑑𝑖 is related to the input 𝑑 .

3.1 Scoring Document Graph Components
First, we score the nodes and edges of a document graph to know
which parts are the most important by using three distinct features.

Tf-idf. Some graph nodes or edges might carry more informa-
tion (are more relevant) than very general ones. In information
retrieval, term-frequency tf and inverse-document-frequency idf
are two paradigms used to determine a term’s relevance concerning
a document 𝑑 . We follow that paradigm and design a tf-idf score for
nodes and edges. We define tf for a concept 𝑐 within a document 𝑑
as tf(𝑐, 𝑑) = #(𝑐,𝑑 )

#𝐶 with #(𝑐, 𝑑) being the number of occurrences of
concept 𝑐 within 𝑑 and #C being the number of all annotated con-
cepts within 𝑑 (for normalization). Next, we define idf for a concept
𝑐 as idf(𝑐) = log |D |

| {𝑑∈D∧𝑐∈𝑑 } | . |D| is the number of documents in
our collection, and the denominator counts documents that include
the concept 𝑐 . With that, we can score nodes with tf-idf as follows:

n-tf-idf(𝑛,𝑑) = 𝑡 𝑓 (𝑛,𝑑) · idf(𝑛). (1)

For edges, we faced issues when maintaining an idf index: First,
the index can get quite large (quadratic growth with regard to
the size of the concept vocabulary). Second, our statement ex-
traction methods are restricted to sentence levels and might be
error-prone [28]. Many connections might be lost during that step,

https://github.com/HermannKroll/NarrativeIntelligence
https://archive.softwareheritage.org/swh:1:dir:9e2435bb03d544039cc96fa1b17537050faec6e3
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affecting the idf score. That is why we decided to approximate the
tf-idf-score for an edge by combining the tf-idf scores of its subject
and object plus multiplying it with a predicate specificity (basically
a score determining how specific a predicate is: treats is more spe-
cific than a general association). We define the tf-idf score for an
edge 𝑒 = (𝑠, 𝑝, 𝑜) concerning a document 𝑑 as:

e-tf-idf(𝑒, 𝑑) = (n-tf-idf(𝑠, 𝑑) + n-tf-idf(𝑜, 𝑑)) · specificity(𝑝) (2)

Coverage. The discovery system is designed for biomedical ab-
stract retrieval. Each abstract typically starts with some background
information in the corresponding field. Concept mentions within
that background part might be less important than concepts men-
tioned across the whole abstract. We therefore define coverage of a
node (concept) 𝑛 within a document 𝑑 as:

n-coverage(𝑛,𝑑) = last_position(𝑛,𝑑) − first_position(𝑛,𝑑)
text_length(𝑑) (3)

The method calculates the difference between the concept’s last
mention and the first mention within the document and normalizes
it by its text length. Coverage approximates whether the concept is
used from the beginning to the end or brieflymentioned somewhere
as a side note. The higher the coverage is, the more relevant a
concept 𝑐 should be. We then define the coverage of a document
graph’s edge 𝑒 = (𝑠, 𝑝, 𝑜) as:

e-coverage(𝑒, 𝑑) = min({n-coverage(s), n-coverage(o)}) . (4)

Confidence. As mentioned, our extraction methods come with
a confidence score, i.e., a score of how sure the tool is about the
corresponding extraction. Please note that a document graph’s
edge could be extracted from different sentences within 𝑑 . The
confidence for an edge 𝑒 is defined as the maximum confidence
value of the statement extractions within 𝑑statements that support 𝑒 .
We do not have confidence values for concept annotations because
the detection methods are dictionary-based linking methods that
perform a binary decision.

Scoring. Finally, we can define the scores of nodes and edges.
Coverage and tf-idf are combined to compute the score for each
node:

n-score(𝑛,𝑑) = n-coverage(𝑛,𝑑) · n-tf-idf(𝑛,𝑑) (5)
For edges, we combine confidence, coverage, and tf-idf:

e-score(𝑒, 𝑑) = confidence(𝑒, 𝑑) · e-coverage(𝑒, 𝑑) · e-tf-idf(𝑒, 𝑑) (6)

Graph Cores. With our previous scoring functions, we can
now determine the relevance of different components of each doc-
ument graph. For instance, the statement extraction step might
yield multiple edges (with different predicates) between two nodes,
e.g., a general association and a specific treats predicate. For our
recommendation step, we filter the graphs by only keeping the
most relevant (best-scored) edge between two concepts and by only
keeping edges between different concept types, e.g., drug-disease
treatments. A graph core is a scored document graph (i.e., the
scoring functions have been applied to each node and edge) that
only keeps the best-scored edge between two nodes. The function
graph-core(𝑑) = 𝑑core takes a document and returns its core.

3.2 Candidate Retrieval (First Stage)
The discovery system contains about 37 million documents (as of
04/2024). Given some input document 𝑑 , comparing its core to that
of every other document is obviously too expensive. That is why
we headed for a two-step approach: A cheap first stage for initial
candidate retrieval and a more expensive second stage that utilizes
our graph cores and re-scores the candidate documents. Given the
document collectionD and some input document𝑑 , its graph𝑑graph
and its graph core 𝑑𝑐𝑜𝑟𝑒 , we propose the following first stages:

Edge-driven (FSCore). The idea for this first stage is that the
more edges some document 𝑑candidate contains with the same con-
cepts in relation as in 𝑑core, the better it is. We iterate over each
edge 𝑒 = (𝑠, 𝑝, 𝑜) of 𝑑core. We then search for documents containing
an edge between 𝑠 and 𝑜 (we do not force the edge’s predicate to be
𝑝 to be more flexible). We add those documents to a set of candidate
documents 𝐷candidate ⊆ D. We add the score e-score(𝑒, 𝑑) to each
candidate document that contains the searched edge. We continue
with our iteration. Finally, we retrieve a scored list of documents:
The higher the score is, the more overlap it has with edges of 𝑑core.

Node-driven (FSNode). FSCore requires that the document
𝑑 has a core (more than zero edges must have been extracted).
However, due to error-prone NLP methods and extractions on sen-
tence levels (but not across sentences), we might lack recall from
the underlying discovery system. That is why we also introduce a
concept-driven first stage. We apply a similar idea to that in FSCore,
but this time, we do not search for edges; instead, we search for
nodes. That means we iterate over the annotated concepts 𝑑concepts,
retrieve documents that contain the concept as one of its nodes,
and add the concept’s score to them.

Concept-driven (FSConcept). FSNode does not force that the
input document𝑑 has a graph but searches for candidate documents
with 𝑑’s concepts on their graphs. As an alternative, we propose FS-
Concept, which just requires that the searched concepts be detected
in the candidate documents but do not necessarily need to be con-
tained on their graphs. FSConcept allows a concept-driven retrieval
without relying on graphs in the input or candidate documents.

Cutoff. We restrict our first stages by a fixed cutoff value, 𝑘 , so
we return only the best-scored 𝑘 documents. If the score is equal,
we sort documents by their IDs in descending order as our system
maintains PubMed IDs and higher IDs usually mean newer pub-
lications. While BM25 computes nearly continuously distributed
scores because it also considers the tf-idf scores of terms within
candidate documents, our first stages come with a step function (ei-
ther a component of the input is contained or not). For instance, the
documents between rank 900 and 1200 could have the same score,
as they contain the same overlap to the input. For that, we propose
a flexible cutoff which considers the score at position 𝑘 and then
cuts the list at the next position the score drops again. However, a
flexible cutoff may result in very large lists, that is why, we use a
hard cutoff at 2 · 𝑘 in any case, to have a maximum boundary.

3.3 Recommendation (Second Stage)
The first stage returns a list of candidate documents 𝐷candidates. For
our second stage, we compute each candidate document’s score
by comparing their cores to our input document. Our proposed
method is shown in Algorithm 1. In brief, if the input document
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Algorithm 1 Recommendation Strategy based on Document Cores
1: Input: 𝑑𝑖𝑛𝑝𝑢𝑡 , 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 Output: a ranked list of documents
2: 𝑐𝑜𝑟𝑒input = graph-core(𝑑𝑖𝑛𝑝𝑢𝑡 )
3: if 𝑐𝑜𝑟𝑒input = ∅ then
4: return candidate documents without sorting them
5: for 𝑑candidate ∈ 𝐷candidates do
6: score[𝑑candidate] = 0
7: 𝑐𝑜𝑟𝑒candidate = graph-core(𝑑candidate)
8: for 𝑒 ∈ (𝑐𝑜𝑟𝑒input ∩ 𝑐𝑜𝑟𝑒candidate) do
9: score[𝑑candidate] = [𝑑candidate] + e-score(𝑒, 𝑑input)
10: return sorted candidate documents by their scores

does not have a core, we cannot compute scores and consider all
input documents as equally relevant. If the input document has
a core, we compare it to every core of the candidate documents.
The score for the candidate document is defined as the sum of all
edges shared between the input document core and the candidate
document’s core. An edge is considered as shared if it connects
the same concepts. This strategy, however, relies on the existence
of cores and the expression of relevant information in these cores.
This might not always be the case: First, extraction methods are
error-prone, i.e., relevant information might be lost. Second, our
concept vocabulary might not contain all relevant concepts of that
domain [28]. That is why we also integrate text-based scoring to
consider not-as-graph-expressed information. Here, we use BM25
scoring by considering titles and abstracts. Let 𝑑𝑖 be the input
document and 𝑑𝑐 be some candidate document. We compute the
final score, as a weighted sum of the graph overlap and BM25 score:

XGPRec(𝑑𝑖 , 𝑑𝑐 ) = 𝑤graph ·core-overlap(𝑑𝑖 , 𝑑𝑐 )+𝑤text ·𝐵𝑀25(𝑑𝑖 , 𝑑𝑐 )
(7)

The core-overlap returns the score of the core overlap based on
our previous algorithm, and BM25 returns the BM25 score when
comparing the text (title plus abstract) of 𝑑𝑖 and 𝑑𝑐 . Note that we
normalize core-overlap and BM25 scores with regard to a candidate
document list 𝐷candidate so documents receive scores between [0,
1] which makes both scores comparable and combineable.

3.4 Explanation Generation
Algorithm 2 shows our explanation approach. The algorithm takes
an input document, some candidate document, and a parameter 𝑙 as
its input. The parameter 𝑙 determines the length of the explanation
to generate. Our idea is to take 𝑙 edges shared between the input
documents and the candidate and mark them as shared (later visual-
ized in colors). In addition, we take up to 𝑙 · 2 edges of the candidate
document, mark them as not shared (later visualized as dashed lines
and not-colored nodes), and add them to our explanation. More
precisely, we only consider the edges of the candidate core con-
nected to one node shared between the input and candidate core.
These additional edges should help the user to understand what the
candidate documents add as new information to the shared pattern.
This way users simultaneously see what is shared and what can be
expected as new information in the candidate document.

Algorithm 2 Explanation Generation Algorithm
1: Input: 𝑑input, 𝑑candidate, 𝑙 Output: A list of shared/not shared

edges
2: 𝑐𝑜𝑟𝑒input = graph-core(𝑑𝑖𝑛𝑝𝑢𝑡 )
3: 𝑐𝑜𝑟𝑒candidate = graph-core(𝑑𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 )
4: for 𝑒 ∈ sort by score(𝑐𝑜𝑟𝑒input ∩ 𝑐𝑜𝑟𝑒candidate) do
5: explanation = explanation ∪ (𝑒, shared)
6: if |explanation| ≥ 𝑙 then
7: break
8: for 𝑒 = (𝑠, 𝑝, 𝑜) ∈ sort by score(𝑐𝑜𝑟𝑒candidate \ 𝑐𝑜𝑟𝑒input) do
9: if |explanation| ≥ 2 · 𝑙 then
10: break
11: if 𝑠 ∈ nodes(𝑐𝑜𝑟𝑒input) then
12: explanation = explanation ∪ (𝑒, o not shared)
13: if 𝑜 ∈ nodes(𝑐𝑜𝑟𝑒input) then
14: explanation = explanation ∪ (𝑒, s not shared)
15: return explanation

4 Implementation and Prototype
We implement our recommendation algorithm by building upon
our [28] discovery system’s code base. The discovery system already
maintains indexes that can be used to estimate the idf scores for
nodes and edges. More precisely, an index maps a concept to a list
of document IDs in which the concept has been detected. For the idf
computation, it is enough to store a dictionary that maps concepts
to the number of documents it appears in. This index contains 1M
concepts and takes 40MB of space. We keep it in memory. Suppose
a user enters a document ID through manual input or via a link
to our system. In that case, we retrieve the document’s data from
the database, perform first-stage retrieval, select the 𝑘 best-scored
documents, and then retrieve the actual candidate document data
for the recommendation. Thus, we load complete document data
only if required.

The graph-based discovery system [28], which we used to im-
plement XGPRec has only utilized concept and graph information
of documents. The system maintains two indexes: A reverse index
for concepts and a reverse index for edges, allowing it to retrieve
documents that support a certain concept/edge (retrieve a set of
document IDs). Our first stage can thus reuse both indexes. Both
indexes are stored as database tables and details are available in
the service’s code repository. We ignored 20 very generic concepts
like therapy or humans as they were detected in more than 1M
documents and thus carry few information. For the BM25 compu-
tation, we created a new BM25 index by utilizing PyTerrier [35] (a
PythonWrapper around the well-known Terrier toolkit). This index
requires about 9.2GB of disk space and can optionally be retrieved
from disk or directly from memory.

Parameters. For the final XGPRec score, we slightly prefer graph
scores over text scores, i.e., we set 𝑤graph = 0.6 and 𝑤𝑡𝑒𝑥𝑡 = 0.4.
We set predicate specificity scores (see tf-idf score for edges) based
on each predicate’s hierarchical level in the three-level predicate
taxonomy (most-specific predicates received a score of 1.0, one level
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Figure 2: Screenshot of our prototypical system: The generated explanation why the candidate document should be relevant to
the input document is shown. Shared information (nodes and edges) are visualized with colors whereas information that is
added by the candidate document is visualized as dashed lines and not colored nodes.

higher 0.5, and the highest level (only associated) 0.25) defined by
the discovery system9. We set 𝑘 = 1000.

User Interface. Figure 2 shows a screenshot of our prototype.
In our user interface the user can enter a document ID as an input.
Then, a list of candidate documents is retrieved and ranked via our
recommendation strategy. For each entry of that list, we generate
an explanation and visualize it as shown in Figure 2. We used the
same color encoding used in the Narrative Service to visualize
document graphs (e.g., red for drugs, green for diseases [28]). Our
graph patterns should help users quickly determine the information
scent of the recommendation list – a feature not available in other
systems. For the explanation visualization, we tested different 𝑙
values (no. of shown edges when generating an explanation). We
found that six (six edges of the core overlap and six additional
edges from the candidate document) generates a graph pattern
that fits into the user interface concerning the available space. We
also improved our old document graph visualization [28]. The old
system basically showed all extracted statements as one graph.
Our improved visualization now shows document graphs that are
reduced to the most essential parts by edge scoring, which should
decrease the complexity for users. However, users can still control
which concept types and thus, which interactions between concept
types, are shown as well as the number of statements to show
(default are ten statements). Our visualization is shown in Figure 3.
9See the taxonomy at https://narrative.pubpharm.de/help/.

5 Evaluation
We (1) describe the used test collections, (2) evaluate the recall and
runtime of our first stage, (3) report the precision and recall of our
recommendation strategy, and (4) close with a human perspective
of our prototypical system.

5.1 Test Collections and Baselines
We use the following test collections:

TREC Genomics 2005 (Genomics) [19]: (50 topics/2525 input
documents) contains natural language questions about genes, in-
teractions, processes and methods for ad-hoc biomedical document
retrieval. The information retrieval test collection was built with
the MEDLINE 2005 (3.7M documents). It has already been used in
previous paper recommendation evaluations [18, 34, 54]. We follow
Zhang et al. [54] in selecting relevant articles (judged as 2 - relevant)
per topic as input documents while considering all other articles
belonging to the same topic as potential candidate documents with
their corresponding judgments (2 - relevant/1 - partially relevant/0
- not relevant). We used the default configuration of trec_eval to
compute the scores. Then, we iterate over all relevant (2) articles
of a topic, perform the recommendation, compute scores, and then
average the scores for all input documents per topic. In this way, we
derive an average score per topic by iterating over all combinations
(input vs. documents to recommend).

https://narrative.pubpharm.de/help/
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Figure 3: Screenshot of our improved document visualization: On the left side, detected concepts are highlighted in the text via
a color encoding. On the right side, the essential document graph is shown, i.e., the most relevant extracted statements are
shown to the users. Users can on the left side filter for certain concept types (diseases, drugs, etc.) and on the right side select
the number of statements that should be shown.

Table 1: Evaluation of our first stages: The set recall and average retrieval time per document is shown. We used a cutoff 𝑘 = 1000.
The flexible cutoff is reported as 𝐹 .

Ranking PM2020 Genomics RELISH
Recall 𝑇𝑑𝑜𝑐 Recall 𝑇𝑑𝑜𝑐 Recall 𝑇𝑑𝑜𝑐

FSCore 0.52 | 0.53𝐹 1.3s 0.22 | 0.22𝐹 0.1s 0.16 | 0.17𝐹 0.3s
FSNode 0.60 | 0.61𝐹 0.8s 0.27 | 0.29𝐹 0.1s 0.22 | 0.24𝐹 0.4s
FSConcept 0.60 | 0.61𝐹 0.9s 0.27 | 0.29𝐹 0.1s 0.23 | 0.25𝐹 0.5s

BM25 Title 0.50 1.1s 0.33 0.2s 0.61 0.6s
BM25 Title + Abstract 0.57 9.3s 0.41 1.2s 0.80 8.3s

TREC Precision Medicine 2020 (PM2020) [43]: (31 topics/1192
input documents) is a biomedical document retrieval test collection
that asks for treatment options (drug), cancer forms (disease), and
a gene variant (gene/target). The collection was built with the
MEDLINE 2019 (29.1M documents). We performed our evaluation
analogous to Genomics.

RELISH [10]: (3278 input document queries) is a biomedical pa-
per recommendation test collection with 161184 distinct documents
which have been rated by experts. It was built with the MEDLINE
2018 (26.7M documents).

Data Processing. Our discovery system [28] already included
the latest version of MEDLINE, so the benchmark documents have
already been processed and transformed into document graph rep-
resentations. For our evaluation, we computed a list of document
IDs belonging to the different MEDLINE versions (2005, 2018, and
2019). This list was used as a filter to retrieve only documents in
our first stages that were initially considered in the benchmarks.

Baselines. We compare our first stages to BM25. Related work
rarely publishes their code or describes theirmethodology in enough
detail to enable reimplementation [25]. Therefore, we decided to
compare against a method applicable to real-world data, that is a
pre-existing system, namely PubMed [34] (see Sec. 2).

As another configuration for the second stage we compared
XGPRec to the documents retrieved by BM25 on titles and abstracts
(the best first stage) reranked with SPLADE [16]. SPLADE uses
lexical matching and term expansion for the embedding of query
and documents and achieved results on par with state-of-the-art
dense retrieval models. Similarity between SPLADE-embedded10
candidate document vectors and query documents is computed
with the Faiss [15, 22] L2 norm. We then identify the 𝑘 documents
to recommend by applying knn.

10By the naver/splade-cocondenser-ensembledistil model and max pooling.

https://huggingface.co/naver/splade-cocondenser-ensembledistil
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Table 2: Detailed evaluation of our recommendation approach XGPRec.

Dataset Strategy 𝑇𝑑𝑜𝑐 Recall nDCG@10 nDCG@20 P@10 P@20 bpref

PM2020 XGPRec 0.45 ± 0.38𝑠 0.61 0.30 0.30 0.33 0.30 0.30
- BM25 0.44 ± 0.38𝑠 0.61 0.25 0.25 0.28 0.26 0.29
- CoreOverlap ≤ 0.1 ± 0.0𝑠 0.61 0.32 0.31 0.34 0.30 0.31

BM25 Title 1.1s 0.50 0.23 0.23 0.25 0.23 0.25
BM25 Title + Abstract 9.3s 0.57 0.29 0.28 0.31 0.28 0.28
BM25 T+A + SPLADE - 0.57 0.22 0.2 0.23 0.2 0.25

PubMed Rec. - 0.29 0.30 0.30 0.33 0.29 0.17

Genomics XGPRec 0.13 ± 0.18𝑠 0.29 0.20 0.19 0.21 0.18 0.15
- BM25 0.13 ± 0.18𝑠 0.29 0.14 0.13 0.16 0.13 0.14
- CoreOverlap ≤ 0.1 ± 0.0𝑠 0.29 0.24 0.22 0.25 0.21 0.16

BM25 Title 0.2s 0.33 0.19 0.18 0.21 0.18 0.17
BM25 Title + Abstract 1.2s 0.41 0.26 0.25 0.28 0.24 0.21
BM25 T+A + SPLADE - 0.41 0.19 0.18 0.20 0.17 0.17

PubMed Rec. - 0.13 0.23 0.22 0.24 0.20 0.09

RELISH XGPRec 0.10 ± 0.33𝑠 0.25 0.22 0.19 0.22 0.17 0.22
- BM25 0.10 ± 0.33𝑠 0.25 0.09 0.08 0.09 0.07 0.21
- CoreOverlap ≤ 0.1 ± 0.0𝑠 0.25 0.35 0.29 0.35 0.26 0.22

BM25 Title 0.6s 0.61 0.33 0.29 0.33 0.27 0.47
BM25 Title + Abstract 8.3s 0.80 0.54 0.49 0.57 0.47 0.59
BM25 T+A + SPLADE - 0.80 0.29 0.26 0.30 0.23 0.57

PubMed Rec. - 0.47 0.55 0.51 0.60 0.52 0.41

5.2 First Stage Evaluation
Table 1 shows the recall and average retrieval time per document
for different first stages, i.e., FSCore, FSNode, FSConcept, BM25
with titles (BM25 T) and BM25 with titles and abstracts (BM25 T+A).
We measured the runtime performance on our server, which has
two Intel(R) Xeon(R) Gold 6336Y CPUs @ 2.40GHz (24 cores and
48 threads each), 2TB DDR4 main memory, and nine Nvidia A40
GPUs with 48GB memory. All time measurements were executed
four times. The first run was a cold start to load all required data
into main memory, and the reported results were averaged over
the last three runs. All data for BM25 was also loaded into main
memory, and no multi-threading/processing was used.

In concept-centric cases like PM2020, FSConcept, and FSNode
achieved the highest recall of 0.6-0.61 and the lowest retrieval time
of 0.8-0.9s per input document. In comparison, BM25 T+A achieved
a recall of 0.57 by requiring about 9.3s per input document. On
Genomics, our methods achieved a recall comparable to BM25 T
(-0.04) with a retrieval time comparable to BM25 T (0.1s vs. 0.2s).
BM25 T+A achieved a recall of 0.41 but required about 1.2s per
document. Please note that these times are measured by using a
BM25 index of only 3.7M documents, compared to 9.3s (BM25 T+A)
on 29.1M documents in PM2020. On RELISH, BM25 T and BM25 T+A
outperformed our first stages’ recall. In brief, the runtime for our
first stages are always below BM25 retrieval and in concept-centric
scenarios, our first stages are effective (PM2020) or comparable
(Genomics). We discuss shortcomings on RELISH in Section 5.5.

5.3 Recommender Evaluation
Our first stages FSConcept and FSNode showed a comparable per-
formance. We decided to use FSConcept with a flexible cutoff as
the first stage for our recommendation approach because (1) we do
not need an additional index (as the node graph index for FSNode)
and (2) FSConcept is less restrictive than FSNode (it just requires
concepts to be annotated in documents and not that these concepts
need to appear on the document graph). Table 2 shows the results of
our recommendation approach (XGPRec) compared to the PubMed
Recommender. We also filtered the PubMed Recommender results
so that only documents are used for the evaluation considered in
the test collections. In addition, we report the results of using XG-
PRec without the core overlap score (-CoreOverlap) and without
the BM25 score (-BM25). In general, our recommendation strategies
took less than 1s per document for the computation (see 𝑇𝑑𝑜𝑐 in
Table 2). On PM2020 and Genomics, XGPRec achieved compara-
ble nDCG and precision to the PubMed Recommender but nearly
doubled recall (0.61 vs. 0.29 and 0.29 vs. 0.13). However, PubMed’s
lower recall could be explained by smaller result sets (maybe be-
cause of some internal precision-oriented cutting strategy). On
RELISH, however, our method was outperformed by the PubMed
Recommender. Another observation was that XGPRec without the
CoreOverlap component achieved the highest scores, i.e., by just
using the BM25 scores.

In comparison, using only BM25 on titles or titles and abstracts
of input documents instead of employing a recommender system
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Table 3: Differences between XGPRec, BM25 and the PubMed
recommender. J@𝑘 gives the average Jaccard coefficient over
the sets of documents at top 𝑘 recommendations for the three
benchmarks PM2020, Genomics, and RELISH.

XGPRec vs. Dataset J@5 J@10 J@20 J@100

BM25 Title+Abstract PM2020 0.24 0.25 0.26 0.30
Genomics 0.23 0.23 0.23 0.26
RELISH 0.10 0.10 0.10 0.09

PubMed PM2020 0.13 0.14 0.16 0.18
Genomics 0.13 0.14 0.15 0.13
RELISH 0.08 0.07 0.07 0.07

achieves good results on the three benchmarks11. The variant using
abstracts unsurprisingly produces higher recall, nDCG, precision
and bpref than the one using titles only. The comparably high
execution time makes this strategy uneligible in a real system.
Results produced by BM25 title are comparable to XGPRec except
for the RELISH case.

For the combination of BM25 on titles and abstracts (BM25 T+A)
as the first stage and using SPLADE and Faiss for reranking in the
second stage we do not report recommendation times. SPLADE
embeddings can theoretically be pre-computed for the whole doc-
ument corpus12 thus our measured times would not reflect the
actual optimized usage options of Faiss (see [15, 22]). The BM25
T+A + SPLADE run produces results for nDCG, precision and bpref
that are considerably worse than XGPRec on PM2020, similar on
Genomics and considerably better on RELISH. As this variant is a
reranking of the results of BM25 T+A, their recall does not differ.

5.4 Differences between XGPRec and PubMed
Table 3 contains average Jaccard coefficients of sets of documents
from top𝑘 recommendation comparing XGPRec with BM25 using ti-
tles and abstracts as well as XGPRec with the PubMed recommender
on our benchmarks. The overlap in documents is similar between
different𝑘 per row, that is between benchmark and comparison. The
overlaps between PM2020 and Genomics are comparable as well.
The overlaps between recommended documents using XGPRec
and the BM25 strategy as well as PubMed is considerably lower in
the RELISH dataset. In general, XGPRec recommends documents
more similar to the BM25 baseline than PubMed. Recommendations
made by XGPRec are dissimilar from those made by the PubMed
recommender. This dissimilarity can be regarded with the com-
parable performance of XGPRec and PubMed on the PM2020 and
Genomics benchmarks to conclude that XGPRec presents docu-
ments to its users which they would not be recommended using
PubMed but which are of similar relevance, as estimated by XG-
PRec. We therefore argue that XGPRec holds value in helping users
to uncover relevant documents which the state-of-the-art in-use
recommendation system does not suggest.

11Note that both PM2020 and Genomics are retrieval benchmarks and that BM25 is a
retrieval method. These benchmarks were built by annotation of documents which
have been highly ranked by retrieval systems, see Sec. 5.5.
12Which we refrained from doing as we would have been faced with embedding 38M
documents which was not feasible for our digital library use case.

5.5 Result Discussion
Usually, collections are crafted by using some initial pooling strat-
egy of candidate documents for each topic and then showing them
to judges who rate whether the document is relevant. RELISH was
constructed by using BM25, tf-idf and the PubMed recommender for
initial pooling [10]. That explains why the PubMed recommender
shows good performance on RELISH. In general, when term-based
retrieval is used for an initial pooling, term-based methods like
BM25 are automatically favored. Advantages of graph-based re-
trieval, e.g., synonymous terms that refer to the same concept, are
then rather useless than helpful. Especially, when documents that
are not judged in the benchmarks are counted as wrong hits.

While some paper recommendation methods just divide relevant
and irrelevant documents given by some test collection, as done in
[10, 21, 42, 54], our system works on a comprehensive document
collection. When evaluating the test collections, we observed two
central issues: First, our graph-based approach retrieved many doc-
uments that have not been judged in the collection data. Those
documents are then considered as incorrect results which hampers
our nDCG and precision@k scores. However, the metric bpref [13],
which ignores unjudged documents, shows that the difference be-
tween core overlap and BM25 is small (1-2% points). In fact, under
the top-20-retrieved documents with XGPRec, we observed 6.2±5.8
unjudged documents on average per topic for PM2020, 9.8 ± 6.3 for
Genomics, and 15.2± 5.4 for RELISH. The number of unjudged doc-
uments decreased for XGPRec without CoreOverlap and only BM25
scores: 5.9 ± 5.6 for PM2020, 9.0 ± 6.2 for Genomics, and 12.9 ± 5.9
for RELISH. Second, not all test collection documents can be rep-
resented by a document graph and salient concepts; hence, our
method cannot retrieve documents in those instances. We counted
the ratio of input documents that have a core with five edges. This
is the case for 96.0% documents for PM2020, 83.0% for Genomics,
and 55.0% for RELISH. Thus, we clearly lacked suitable document
graph representations on RELISH. The discovery system has been
built for the pharmaceutical domain, i.e., mainly for gene, drug, and
disease interactions (reflected in PM2020 and Genomics) and not
for psychological or orthopedic topics as present in RELISH.

While both issues explain that BM25 achieved higher scores than
our graph-based overlap method, our graph method has the advan-
tage of preferring overlapping graphs. Moreover, these overlapping
graphs can explain recommendations for users. We already know
domain experts like using graphs in the context of literature search
to quickly determine if results fit their information needs [26].

While PubMed and XGPRec produce comparable results on
PM2020 and Genomics, the actually recommended documents are
vastly different from each other. Therefore, we argue XGPRec being
a suitable tool to uncover potentially relevant documents which
PubMed does not suggest to users. We consider XGPRec not as
a better recommendation system compared to PubMed for pro-
ducing relevant recommendations but instead want to emphasize
on XGPRec’s value to help discover different documents in an
explainable manner.

In brief, XGPRec offers explanations by design, can handle a
real-world digital library collection with about 37M documents,
and offers a comparable performance to the PubMed recommenda-
tion (which is likely the most used recommender in the biomedical
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domain). Beyond that, XGPRec retrieves result lists that differ from
existing benchmarks (results are not judged there) and recommen-
dation approaches. These results are worth of further investigation.

5.6 Human Perspective
To get initial user feedback on our recommendation system we sep-
arately interviewed two experts from the pharmaceutical domain
for 30 minutes. The experts were also knowledgeable users of the
underlying discovery system. An interviewer first briefly described
the interface’s functionality, before the domain experts used the
system for 20 minutes to satisfy information needs while thinking
aloud. Afterwards the interviewer asked some clarifying questions
regarding liked or disliked components, missed functionality and
general feedback.

Results. Both users looked at five (individually chosen) initial
papers and commented on their recommendations’ relevance. They
both searched for 1) interactions or 2) keywords contained in an
initial paper. They both observed broader and more focused in-
formation needs. Our users enjoyed using the system, were very
positive about the quality of recommended papers and especially
praised the explanation graphs. They were immediately able to use
the visualization of the overlap between their initial paper and the
candidate suggestions. They were able to interpret the graphs at
a glance and distinguish relevant from less relevant suggestions
instantly without having to read the title of the papers. One partic-
ipant only observed the graphs of recommendations and did not
click a single detail view while the other preferred to first read titles
and if titles were hinting towards relevance, they checked out the
graphs. When first screening titles, it would be desirable to have
the graphs less prominent. It was mentioned that the graph was
considered a better option for screening papers than a keyword
list. One person used the option of observing similar articles of
recommended articles, thus chaining recommendations to navigate
the content of the underlying digital library.

Features which participants missed were a structuring of the
result list, e.g., by types of overlapping edges/patterns and the pos-
sibility to emphasize/weight edges from input papers which a user
considers highly relevant. Purely technical wished for functionality
were the option to keep the initial paper displayed on the same
page while checking the recommendations, a bookmarking or ex-
port option for relevant articles, filtering options on the result list,
and a description how the recommendation system determines the
suggestions, i.e., a brief description of our used method.

Discussion. Our interview partners used the graph overlap
between the initial and a candidate paper intuitively to understand,
why a paper was recommended. The explanation therefore satisfies
the aims of justification [6]. One study participant mentioned the
current interface lacking information how our systems generates
the list of recommendations [6] which should be tackled by some
info box. Chaining recommendations seems to be a good way of
exploring a topic. Even though our evaluation with test collections
did not produce the best results numerically, our preliminary user
study showed participants’ immediate acceptance of the system
and their satisfaction with the recommendations. This could hint
at a mismatch between test collections and the human perspective
in paper recommendation - collections are absolutely needed to

construct systems but theymust be complemented with a user study
to further shed light on advantages and limitations of systems.

As a next step in development and after confirming the user
interface’s preliminary suitability, we intend to bring the system
into a beta phase and run a large scale study in order to explore
explanation options for recommendations.

6 Conclusion
This work extended our graph-based discovery system by an ex-
plainable paper recommendation component for a real-world digital
library document collection. In contrast to many other works, our
method (1) is unsupervised, i.e., we do not require training data
and a library must thus not collect training data to implement a
similar algorithm, and (2) it works on a real, large-scale collection
with 37M documents. While our evaluation shows benefits and
limitations, we demonstrated an overall comparable performance
to the PubMed recommender while suggesting a vastly different
set of documents and therefore potentially broadening a user’s ex-
ploration space. We argue that precise, concept-centric information
needs are common in the biomedical domain, as seen in a PubMed
query log analysis [20], PM2020 [43], our previous user study [28],
or our discovery system’s query log analysis [26]. For these concept-
centric use cases like in PM2020 or Genomics, our system shows its
advantages: The first stage is fast and effective and the core overlap
recommendation allows to derive graph pattern explanations which
help our users. In brief, our recommendation strategy XGPRec is
fast in handling an extensive collection, offers a comparable per-
formance to PubMed’s real digital library recommendation system,
and provides users with suitable graph explanations. This research
demonstrates how graph-based document representations allow
beneficial exploration in digital libraries. Beyond that, our code is
freely available so that other digital libraries can use or adapt our
effective graph-based recommendation implementation.

Explanations must be a focus for future work, i.e., to further
improve the visualization strategy by adjusting it to possible user
needs. Beyond that, combining graph-based explainable with tradi-
tional recommendationmethods as well as a user-controlled weight-
ing of graph components are worth of further investigation.
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