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Motivation

Did you know? 



1. Bind the whole narrative
against real-world data

2. All bindings must be 
context-compatible
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Narrative Information Access

~ ~~
~



• Narrative information access allows precise 
and structured searches in digital libraries
– It is an extension to knowledge base querying
– Contexts are vital to determine a statement’s validity

Last JCDL’s Conclusion
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• Implemented Narrative information access
in pharmacy:
– www.narrative.pubpharm.de
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What we Did

Implicit Context Model

http://www.narrative.pubpharm.de/




• Can a user’s search intent be deduced 
from a keyword query?
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Research Question
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Schematic Overview
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Narrative Queries
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Narrative Queries

Metformin Diabetes

?X(DosageForm)

treats

administered as
Case-based 

Study

• A narrative query consists of:
– concepts as nodes
– interactions as edges
– terms to support out-of-vocabulary concepts

Young Men

Hard to connect 
to the pattern

Some searched terms
 might not be known as 

concepts (out-of-vocabulary)



• Nested structure would allow 
a higher expressiveness
– However, hard to realize/implement
– That is why we kept queries flat at the moment
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Narrative Queries

Metformin Diabetes

?X(DosageForm)

treats

administered as

Case-based 
Study

analyzed in



Data Model
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Document Graphs

Metformin Diabetes

Injection
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Document 123
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Document Collection Index

Metformin Diabetes

Injection

treats

administered as

mTOR

inhibits

Document
Collection
Index

{1}

{2, 3}

{3}

Documents

{1, 10} {1, 2, 3, 4} {3, 11}

{2, 3, 12}



Translation
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Translation Goal

Metformin Diabetes

?X(DosageForm)

treats

administered as

Case-based 
Study

Metformin Diabetes Dosage Form 
Case-based Study Young Men

Algorithm X

Young Men



1. Map keywords (or combinations) to…
– A concept / a term / a predicate

2. Generate all possible narrative queries
– Keep queries that yield at least a single document (via the document 

collection index) to ensure hits for the users

3. Select queries based on different criteria:
– Most-specific / Most-general / Most-supported (based on hits)
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Query Generation Strategy



Evaluation



• Can a user’s search intent be deduced
from a keyword query?

–Query Representation: How should generated patterns be presented 
to the users, i.e., which query representation is suitable for our users?

– System Satisfaction: How useful is the end-to-end system?

– Translation Effectiveness: How effectively does our method 
translate keyword-based queries to narrative queries for users?
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Evaluation Aspects
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Query Representation
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Qualitative Evaluation
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Query Representation



• Graph-based representation 
most suitable for our users

– Pharmacists were familiar with graph representations

– Graphs were easier and faster to understand than natural language

22Narrative Retrieval — Hermann Kroll — TU Braunschweig

Findings (1/3)
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System’s Satisfaction
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User Interface



• Think-Aloud + semi-structured interviews
– Time: 30 minutes each
– Participants: 10 pharm. researchers (PhD Students, PhDs, Profs.)
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System Evaluation



• System was appreciated by our users:

– It eases narrative retrieval and yield 
quickly relevant documents

– But, the system was to slow for usage 
and needs UI improvements
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Findings (2/3)
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“Translation” Effectiveness
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• Query model boosts precision 

in biomedical document retrieval

– And indeed, our strategies selected those queries 

– Details and statistics can be found in our paper
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Findings (3/3)



• Graph-based representation 
most suitable for our users
– Fast and easy to understand

• System was appreciated by our users:
– It eases narrative retrieval for users
– But, performance and UI needs to be improved

• Query model boosts precision in biomedical inf. retrieval
– And indeed, our strategies selected those queries
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Summary
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Contributions
Unsupervised Translation Algorithm Query Representation

User Studies Systematic Evaluation



• Can a user’s search intent be deduced
from a keyword query?
– Yes, a rather simple translation algorithm did already the job

• This research eases narrative 
information access in digital libraries
by deducing narrative patterns 
from well-known keyword queries
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Conclusion



Thank You!
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kroll@ifis.cs.tu-bs.de

@HermannKroll

If you have any questions, 
contact me via:

@hkroll@fosstodon.org


